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Abstract. We introduce a model for the fragmentation of porous random solids under the action
of an external agent. In our model, the solid is represented by a bond percolation cluster on the
square lattice and bonds are removed only at the external perimeter (or ‘hull’) of the cluster.
This model is shown to be related to the self-avoiding walk on the Manhattan lattice and to the
disconnection events at a diffusion front. These correspondences are used to predict the leading
and the first correction-to-scaling exponents for several quantities defined for hull fragmentation.
Our numerical results support these predictions. In addition, the algorithm used to construct the
perimeters reveals itself to be a very efficient tool for detecting subtle correlations in the pseudo-
random number generator used. We present a quantitative test of two generators which supports
recent results reported in more systematic studies.

1. Introduction

Many porous solids (such as silica aerogels, sintered materials, and some types of sandstone
and charcoal) are only tenuously connected and thus fragment easily. The structure of these
solids usually involves a high degree of randomness. Percolation clusters are the simplest
random, porous objects. With this motivation, Gyure, Edwards and Ferer (GEF) recently
studied the fragmentation of bond percolation clusters on the square lattice [1]. In their work,
a single bond was removed at a randomly chosen point within the cluster. If fragmentation
occurred, the sizes of the daughter clusters were recorded. Ultimately,GEF studied the
scaling properties of the fragment size distribution.GEF’s model is believed to capture
some of the essential features of the fragmentation of real porous solids.

Real porous solids can fragment during etching by a chemical agent or during
combustion. In both instances, material is removed only at the external surface of the porous
solid. InGEF’s model, however, a bond is removed at any point within the cluster. Therefore,
their model should not be applied to the combustion or etching of porous materials.

To obtain a model for these phenomena, in this paper we will modifyGEF’s model so that
bonds are removed only on the external surface (or ‘hull’) of the percolation cluster. Since
the hull and bulk properties differ for two-dimensional percolation clusters [2], we expect
that the scaling properties of the two models of fragmentation will also differ. Specifically,
we study the fragmentation of the external perimeters of critical bond percolation clusters
on the square lattice. We present the results of intensive numerical simulations in which the
perimeters are first constructed and then fragmented exhaustively. The size distribution of
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the constructed perimeters is used for testing our algorithm. This test reveals the existence
of a subtle bias in a widely used random number generator,R250.

We establish connections between the fragmentation of the external perimeters and
two other statistical models: the self-attracting self-avoiding loop on the Manhattan lattice
[3] and the temporal fluctuations of a diffusion front [4]. This allows us to make very
precise predictions for the scaling form of various physical quantities. The behaviour of
the leading-order and first correction terms are checked numerically in each case and very
good agreement is found with the expected behaviour. Our results allow us to find the
first accurate estimate for the exponent associated with the hull fragment size distribution.
Finally, a number of scaling prefactors are also estimated.

The paper is organized as follows. The model and the algorithm used in the simulations
are described in section 2. Section 3 deals with the relations of hull fragmentation to the two
problems mentioned in the previous paragraph. The results for the perimeter size distribution
are presented in section 4, and section 5 concerns our results on hull fragmentation. Finally,
section 6 summarizes the results obtained in the paper.

2. The model

Consider bond percolation on a square lattice with lattice spacinga at the percolation
thresholdp = pc = 1

2. Each cluster has a single external perimeter (its ‘hull’), and it
may have no internal perimeters or a number of them. To construct the percolation cluster
perimeters without constructing the clusters themselves, we use a hull-generating walk [5]
introduced by Gunn and Ortuño [6].

The Gunn and Ortũno walk (GOW) is a random walk on the covering lattice of the
original square lattice (figure 1). (The covering lattice is a square lattice obtained by
joining the centres of adjacent bonds on the original lattice.) We will seta = √

2, so that
the bonds on the covering lattice have unit length. Initially, the states of all the bonds on the
original lattice are unspecified, i.e. they are neither occupied nor vacant. The walk starts at
the origin of the covering lattice. At the first time step, one of the four possible directions

Figure 1. Two 16-stepGOW (thin lines) and the corresponding percolation cluster perimeters.
(a) The external perimeter is made up of three occupied bonds (bold lines), plus nine vacant
bonds (broken lines). There are four constriction points and three fragmenting bonds on this
perimeter. (b) The internal perimeter is made up of nine occupied bonds (bold lines), plus three
vacant bonds (broken lines). There are four constriction points and one fragmenting bond on
this perimeter.
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is randomly chosen and a unit step is performed in this direction. The bond reached by the
walk is called the target bond. TheGOW is then constructed step by step. At each step,
the nature of the target bond is tested. If its state has not yet been specified, it becomes
occupied or vacant with equal probability. On the other hand, if the state of the target bond
has previously been designated, its state is left unchanged. The next step is to the right if
the target bond is vacant and to the left if it is occupied. The walk stops when it attempts
to re-traverse the initial step. It is then a closed loop.

It is straightforward to see that theGOW generates a perimeter of a percolation cluster
at p = pc = 1

2. With our conventions,GOWs that close in a clockwise fashion are external
perimeters, whileGOWs that close in a counterclockwise fashion are internal perimeters.

We now restrict our attention to the external perimeters generated by theGOW. The
occupied bonds on the original lattice that are touched by theGOW are the hull bonds. One
of these hull bonds is now chosen at random and is replaced by an unoccupied bond. This
combustion (or chemical etching) event may or may not result in the fragmentation of the
percolation cluster. In this paper, we will remove a single hull bond and study the resulting
fragments. Therefore, our work concerns only the initial stages of the fragmentation process
(the same is true of the work ofGEF).

A fragmenting bondwill be defined to be an occupied bond on the original lattice that
the GOW visits twice (see figure 1). The removal of the chosen bond only results in the
fragmentation of the percolation cluster if the chosen bond is a fragmenting bond. If the
chosen bond is indeed a fragmenting bond, theGOW is modified to reflect the fact that the
chosen bond is now unoccupied (see figure 2). This results in the fragmentation of the
parentGOW into two loops that trace out the perimeters of the cluster fragments.

Suppose that the originalGOW of s steps is fragmented into two loops ofs ′ ands − s ′

steps, respectively, and lets ′ 6 s − s ′, so that the loop ofs ′ steps is the smaller of the two
fragments. We definePs ′,s to be the probability that a daughterGOW of s ′ steps is obtained
from the combustion of a parent loop of lengths. Note that the probability that combustion
actually fragments aGOW of s steps,Pf(s) ≡ ∑s/2

s ′=4 Ps ′,s , is in general different from unity.
In our simulations, theGOWs were generated on a 65 536× 65 536 square lattice. This

lattice was divided into cells of size 256× 256 and memory was only allocated to the cells
visited by the walk. This data-blocking technique has proven to be a very efficient tool
for constructing hull-generating walks [2, 7]. Since the walks were also fragmented in our
simulations, memory had to be allocated as efficiently as possible. A bit-coding technique
was therefore used to store the visited cells. The construction of aGOW was terminated if
the number of steps performed exceeded a cut-off valuesmax = 220. With this cut-off, the
boundaries of the lattice were never reached and it appeared to be virtually infinite.

Figure 2. Fragmentation of a 16-stepGOW into a 12-step and a 4-stepGOW (thin lines). For
clarity, we have only shown the occupied bonds (bold lines) in the corresponding percolation
perimeters. The fragmentation is caused by the removal of the right vertical occupied bond in
the original perimeter.
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During the construction of a perimeter, each time a new step was made, the target bond
was tagged by an integer value equal to the total number of steps performed up until that
point. Thus, fragmenting bonds were assigned two tags whose difference gave the number
of steps in one of the two corresponding fragments. When a perimeter closed afters steps,
each pair of fragments with lengthss − s ′ ands ′ associated with a given fragmenting bond
was examined and only the smaller fragment was kept in memory. We were able to perform
this task efficiently by using a hash list to store the coordinates of the visited bonds. In this
paper, only the data we obtained for fragmentation of external perimeters will be discussed.

3. Relationship of hull fragmentation to two other models

As mentioned in the introduction, hull fragmentation is related to two other models. We
will begin by discussing the relation to self-attracting self-avoiding loops on the Manhattan
lattice.

Let us define aconstriction pointto be any point that is touched twice by theGOW (see
figure 1). A constriction point can lie at the centre of either an occupied or a vacant bond.
If a constriction point lies at the centre of an occupied bond, the bond is a fragmenting
bond. An unoccupied bond with a constriction point at its centre will be called anon-
fragmenting bond. We will denote the number of constriction points, fragmenting bonds,
and non-fragmenting bonds touched by a clockwiseGOW of s steps byNc(s), Nf(s) and
Nn(s), respectively. Clearly,Nc(s) = Nf(s) + Nn(s).

A closed Gunn and Ortũno walk can be mapped onto the self-attracting self-avoiding
loop on the Manhattan lattice at its theta point (θ -MSASAL) [3]. A number of exact results
are known for the latter model (for a recent review, see [8]). In particular, the average
energy of aθ -MSASAL of s steps scales as23εs + 2εAs3/7 ass tends to infinity. Hereε is
the energy assigned to each unbonded nearest-neighbour pair andA is a non-zero constant.
Under the mapping, aθ -MSASAL with s steps and energy 2εN is transformed into aGOW

with s steps andN constriction points. Thus, the average number of constriction points in
a GOW of s steps scales as13s + As3/7.

This result applies toGOWs of s steps that close in either a clockwise or counterclockwise
fashion. However, simply by reversing the direction of the walk, any clockwiseGOW can
be converted into a counterclockwiseGOW, and vice versa. As a result, the average number
of constriction points on a clockwiseGOW of s steps,〈Nc(s)〉, scales as

〈Nc(s)〉 ' 1
3s + As3/7 . (3.1)

Let π+
s (π−

s ) be the probability that a hull-generating walk closes in exactlys steps in
a clockwise (counterclockwise) fashion. Ziff has argued that there is a symmetry about the
percolation threshold, and, consequently,π+

s /π−
s should tend to 1 ass tends to infinity for

p = pc [2]. Using this as a criterion to locate the percolation threshold for site percolation
on the square lattice, Ziff obtained an extremely accurate value forpc that is in accord with
estimates obtained by other means.

The GOW generates a perimeter of a bond percolation cluster on the square lattice at
the percolation threshold. Therefore, if Ziff’s conjecture is valid,π+

s /π−
s should tend to

1 ass tends to infinity. We now make an analogous conjecture. Let the mean number of
fragmenting bonds touched bycounterclockwiseGOWs of s steps be denoted by
〈N ′

f (s)〉. We conjecture that

〈N ′
f (s)〉

〈Nf(s)〉 → 1 as s → ∞ . (3.2)
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A clockwise GOW traces out the external perimeter of a percolation cluster. If the
direction of thisGOW is reversed, it becomes a counterclockwiseGOW that generates the
internal perimeter of a percolation cluster. Under this reversal, the clockwiseGOWs non-
fragmenting bonds become the fragmenting bonds of the counterclockwiseGOW (figure 1).
Therefore,Nn(s) = N ′

f (s), and equation (3.2) becomes

〈Nn(s)〉
〈Nf(s)〉 → 1 as s → ∞ . (3.3)

As we shall see in section 5, our Monte Carlo results are in excellent agreement with this
conjecture, and we now presume equation (3.3) to be valid. Since

〈Nf(s)〉 + 〈Nn(s)〉 = 〈Nc(s)〉

equation (3.1) then shows that both〈Nf(s)〉/s and 〈Nn(s)〉/s must tend to1
6 as s tends to

infinity. Moreover, ass → ∞, we must have

〈Nf(s)〉 ' 1
6s + Afs

3/7 (3.4)

and

〈Nn(s)〉 ' 1
6s + Ans

3/7 (3.5)

whereAf +An = A. There is no reason to assume thatAf andAn are equal, and our Monte
Carlo results strongly suggest that they are not. Note that for larges, both 〈Nf(s)〉 and the
number of occupied bonds touched by theGOW scale ass1. Therefore,Pf(s) tends to a
non-zero constant ass → ∞.

We now turn to the relation of our model to the problem studied by Gouyet and
Boughaleb (GB) [4]. GB studied the diffusion of a set of non-interacting particles in the
presence of a concentration gradient in the strip{(x, y) | 0 6 x 6 L′ and 06 y 6 L}. The
length of the stripL′ is assumed to be large compared to the widthL, andL � a. The
concentration of diffusersp is fixed at one forx = 0 and at zero forx = L′. This problem
is also known as ‘gradient percolation’ since at any time the problem is equivalent to site
percolation in which the fraction of occupied sitesp varies linearly from one end of the
strip to the other†. Naturally, there is a large cluster of particles that has one edge on the
end of the strip with concentrationp = 1. We will call this cluster the ‘parent cluster’.
The frontier of the parent cluster within the strip is called the diffusion front. Since the
particles are all diffusing, the diffusion front is constantly fluctuating, and small clusters are
continually joining and separating from the parent cluster at the diffusion front. It is these
fluctuations thatGB chose to study.

GB obtained a number of interesting results, but only one is of interest here. LetNfrag(σ )

be the number of clusters with an external perimeter of lengthσ that disconnect from the
parent cluster in a unit time.GB argued thatNfrag(σ ) follows the scaling form

Nfrag(σ ) = Lσ−11/7|∇p|−3/7F(σ |∇p|) (3.6)

where |∇p| = 1/L′ is the concentration gradient andF is a scaling function. Note that
F(0) is a finite, non-zero constant and thatF(x) → 0 asx → ∞. Let Pfrag(σ )1y be the

† Gradient percolation was first studied by Sapoval and co-workers [9].
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probability that an external perimeter of lengthσ is disconnected from the parent cluster
per unit time within the strip{(x, y) | 0 6 x 6 L′ andy0 6 y 6 y0 + 1y}. Herey0 is a
constant lying between zero andL anda � 1y � L. Clearly,

Pfrag(σ ) = σ−11/7|∇p|−3/7F(σ |∇p|) . (3.7)

If σ � |∇p|−1, then Pfrag(σ ) scales asσ−11/7 as a function ofσ . On length scales
small compared to the width of the diffusion frontw ∼ |∇p|−4/7, the diffusion front has
the same geometry as the infinite percolation cluster at threshold in percolation without a
concentration gradient [4]. Therefore,Pσ,s ∼ σ−11/7 for σ � s. Now a fragment cannot
have a perimeter longer than its parent, which means that this scaling behaviour must be
cut off whenσ approachess. We conclude thatPσ,s obeys the scaling law

Pσ,s ' σ−11/7G(σ/s) (3.8)

where the scaling functionG(x) is finite and non-zero forx = 0 and is zero forx > 1.

4. Monte Carlo results on the perimeter distribution

The first part of our algorithm, i.e. the construction of a percolation-cluster perimeter by
a GOW, was tested before fragmentation was studied. We generated a total of 2× 105

GOWs with a cut-off length ofsmax = 220. The numberNext
s of external perimeters that

closed after exactlys steps was computed. We also found the number of internal perimeters
that closed afters steps,N int

s . Due to the symmetry aboutpc, the ratioρs ≡ Next
s /N int

s

should be equal to one at the percolation threshold [2, 7]. Theρs values obtained with
two different pseudo-random number generators are displayed in figure 3. We have
also shown error bars±1ρs approximately corresponding to one standard deviation, i.e.
1ρs = 1/

√
Next

s +1/
√

N int
s . The first generator (which is usually calledR250in the literature)

is based on a generalized feedback shift register method. Theρ values obtained withR250

reveal significant correlations in this generator fors > sc = 300–400. This is in good
agreement with recent numerically intensive studies [10] that have shown that correlations
can reveal themselves inR250 when more than 250 consecutive random numbers are used
in a row for the same task. Our estimate forsc is slightly higher than 250. This is because
the GOW revisits roughly 1

3 of the total number of bonds on average, as explained in the
previous section. Thus, only 250 independent bonds are needed to construct a walk of
s ∼= 375 steps, a value in good agreement with oursc estimate. Figure 3 also shows that the
bias introduced byR250favours internal perimeters for intermediate values ofs and external
perimeters for large values ofs.

The second generator we used is a linear congruential generator with shuffling named
RAN1 [11]. In contrast toR250, no bias was observed in the data obtained usingRAN1

(figure 3). Accordingly, all subsequent calculations were made with this generator. To
improve the statistics, the number ofGOWs generated withRAN1 and smax = 220 was
increased to 106. Generating and fragmenting these walks on an HP730 workstation required
approximately 15 CPU days and 20 MB of memory.

A second test of our algorithm was obtained by checking the scaling of the distribution
of walk lengths. Let the total number ofGOWs that close after exactlys steps beNs .
Because theGOW generates the perimeter of a percolation cluster,Ns scales as

Ns ∼ s1−τ ′
(4.1)
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Figure 3. The number of external versus internal
s-step perimeters as a function ofs. The full
(open) circles correspond to 2× 105 perimeters
constructed with the random number generator
namedR250 (RAN1).

Figure 4. Computed fractionFs of theGOWs
that remain open afters steps (diamonds).
Also shown is the finite-size estimatorτ ′

s

(circles) which is deduced from the local
slope 1(logFs)/1(logs) for consecutive
pairs of points. The broken line is the
expected asymptotic valueτ ′ = 15

7 .

where the distribution exponentτ ′ is known to be exactly equal to15
7 = 2.142 857. . .

[2, 12]. Accordingly, the fractionFs of perimeters that are still open afters steps must
scale ass2−τ ′

. Our data forFs are plotted on logarithmic scales in figure 4. The local
slope1(logFs)/1(logs) for consecutive pairs of points is used to compute a finite-size
estimatorτ ′

s for exponentτ ′. The fluctuations inτ ′
s for smalls are an artefact of our binning

procedure (see section 5).τ ′
s is roughly constant whens > 103 and its average value is

found to beτ ′ = 2.1430±0.0003 in this range. This is the most precise numerical estimate
obtained for this exponent to date, and our value is in excellent accord with the exact result
τ ′ = 15

7 . This result strongly suggests that the correlations inRAN1 have a negligible effect
on the results reported in the following section.
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5. Monte Carlo simulations of hull fragmentation

The 422 201 clockwiseGOWs that closed before reaching the maximum number of steps
smax = 220 were taken into account in the fragmentation statistics. These are the external
perimeters. The open walks and internal perimeters that were constructed were simply
discarded. For thes-step external perimeters, we computed〈Nf(s)〉, 〈Nc(s)〉, and the average
number of fragmenting bonds whose removal would result in the formation of a daughter
loop of s ′ steps,Fs ′,s . Note thatFs ′,s = 〈Nf(s)〉Ps ′,s/Pf(s). The first moment ofFs ′,s was
calculated for the smaller fragments: i.e. we computed

M1(s) ≡
s ′=s/2∑
s ′=4

s ′Fs ′,s . (5.1)

The lower limit for this summation,s ′ = 4, corresponds to the smallest fragment that can
be produced by removing a fragmenting bond in aGOW (see figure 2). From equations (3.4)
and (3.8), we deduce that for larges

M1(s) ' A′s10/7 + B ′s (5.2)

where the second term is an analytical correction due to the non-zero lower limit in (5.1).
To avoid large fluctuations, we binned our data for〈Nf(s)〉, 〈Nc(s)〉 andM1(s) in much

the same way asGEF did. The bins, which are numbered with the positive integer valuei,
were defined to be the set of intervalss ∈ [4αi−1, 4αi) with α = 21/8. For instance, the
binned average number of fragmenting bonds,8s , was defined as follows:

8s =
(σ=αs∑

σ=s

Nσ

)−1 σ=αs∑
σ=s

〈Nf(σ )〉Nσ (5.3)

whereNσ is the number ofσ -step external perimeters constructed. Similar expressions were
used to calculate�s and µs , the binned quantities for the average number of constriction
points〈Nc(s)〉 and for the first momentM1(s), respectively.

This binning procedure changes the values of the constants appearing in equations (3.1),
(3.4) and (5.2). Combining (3.4), (4.1) and (5.3) and restricting the calculation to the two
leading terms, we obtain

8s ' s

6

[(
2 − τ ′

3 − τ ′

)(
α3−τ ′ − 1

α2−τ ′ − 1

)]
+ Afs

3/7

[(
2 − τ ′

17/7 − τ ′

)(
α17/7−τ ′ − 1

α2−τ ′ − 1

)]
. (5.4)

With τ ′ = 15
7 andα = 21/8, we find

8s ' 0.174 085s + 1.018 76Afs
3/7. (5.5a)

Similarly,

�s ' 0.348 170s + 1.018 76As3/7 (5.5b)

and

µs ' 1.064 39A′s10/7 + 1.044 51B ′s . (5.5c)
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Figure 5. Binned values of8s/s, µs/s
10/7 and�s/s. The

broken horizontal lines indicate the exact asymptotic values
and the dotted line is an estimated asymptotic value.

Figure 6. The ratio(�s−8s)/8s plotted as a function
of s, as a test of the conjecture made in equation (3.3).

We indeed observed that our data for8s/s and�s/s converge asymptotically to 0.174 085
and 0.348 170, respectively (figure 5). We were also able to check the conjecture made in
equation (3.3) by plotting(�s − 8s)/8s as a function ofs (figure 6). As conjectured, we
find that this ratio converges asymptotically to one.

A finite-size estimator,ys = log(82s/8s)/ log 2, was computed to determine the
leading-order exponent of8s , and similar estimators were used for�s and µs . These
estimators converge very slowly to constant values, so that the asymptotic regime is only
reached for very longGOWs. To reduce the influence of the finite-size corrections, we plotted
each estimator as a function of 1/s and extrapolated to 1/s → 0 (figure 7). For8s and�s ,
the extrapolated values arey∞ = 0.9985±0.0004 andy∞ = 1.0006±0.0004, respectively.
The errors quoted here are solely due to the scatter in the data points. They do not take
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Figure 7. Extrapolation tos → ∞ of the
finite-size estimatorsys for the leading-order
exponent of8s , �s andµs . The full lines are
linear least-squares fits to the data points.

Figure 8. Numerical estimation of the leading-order
correction terms for8s , �s andµs . The full lines are
linear least-squares fits to the data points.

into account some other contributions to the uncertainty—the statistical error, for instance.
Our results are thus in good agreement with the expected values, which are both equal to 1
(see equations (5.5a) and (5.5b)). A similar extrapolation gavey∞ = 1.430± 0.004 forµs ,
a result which is in excellent agreement with the value predicted byGB, 10

7 = 1.4285. . .

(see equation (5.5c)). GB found an estimate of 1.60± 0.02 for this exponent that does not
agree with their own prediction. The reason for this discrepancy is thatGB only considered
relatively small fragments. As a consequence, their estimate was biased by finite-size
corrections. Finally, note that our data provide strong support for the validity of the scaling
law (3.8) forPσ,s .

Our next step was to check the values of the leading correction exponents given in (5.5).
We computed the difference8s − 0.174 085s and plotted this quantity as a function ofs

(figure 8). A two-parameter fit of the data points to the formα1s
−α2 gaveα1 = 0.66± 0.07

and α2 = 0.43 ± 0.01. The data fors < 103 were not included in this fit because we
observed that higher-order corrections are still significant in this range. Similarly, we
obtainedα1 = 0.65±0.18 andα2 = 0.42±0.03 from the data for 0.348 170s−�s (figure 8).
Both estimates ofα2 are in good agreement with the expected value,3

7 = 0.428. . . .
The exact asymptotic value ofµs/s

10/7 is not known. However, extrapolating this ratio
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as s → ∞, we were able to find the estimateA′ = 0.470± 0.004 (see figure 5). The data
points for 0.500 s10/7 − µs were then fitted to the formα1s

−α2 (figure 8). Here again, our
estimate for the leading correction exponent,α2 = 1.04± 0.05, is in good agreement with
the expected value, unity. The corresponding estimate for the prefactor isα1 = 0.35±0.17.

As a by-product, rough estimates were obtained for the prefactorsAf , A, andB ′ (see
equations (5)) which, to our knowledge, have not been computed previously. We find
Af ' 0.65± 0.07, A = −0.63± 0.18, andB ′ = −0.33± 0.16.

6. Conclusions

In this paper, we introduced a model for the fragmentation of random porous objects
resulting from chemical etching or combustion. In our model, the porous solid was
represented by a bond percolation cluster on a square lattice and mass was removed only
at the cluster’s external perimeter.

We argued that the probability,Pσ,s , that the combustion of a cluster with perimeters

yields a fragment with perimeterσ , has the scaling formPσ,s = σ−φH G(σ/s), whereG

is a scaling function. The exponentφH is believed to be exactly11
7 , and our numerical

work strongly supports this belief. Our numerical work also supports the analytical work
of Boughaleb and Gouyet on connection and disconnection events at diffusion fronts [4].

Using a relationship between our model and self-avoiding self-attracting loops on the
Manhattan lattice, we argued that the average number of fragmenting bonds〈Nf(s)〉 scales
as 1

6sλH + Afs
3/7 when s is large. Here the exponentλH is exactly equal to 1 andAf is a

constant. Our numerical work is in excellent agreement with this result.
Let us compare these results with the corresponding results in theGEF model of

fragmentation. LetP ′
σ,s be the probability that the fragmentation of a percolation cluster

of s bonds results in the formation of a fragment ofσ bonds. GEF argued thatP ′
σ,s obeys

the scaling lawP ′
σ,s = σ−φH(σ/s) [1]. The exponentφ is believed to be exactly equal

to 146
91 [1, 13, 14], and so the values ofφH andφ differ. This is not surprising, since other

exponents describing the hull and bulk properties of two-dimensional percolation clusters
differ as well. Finally, note that in theGEF model, the average number of fragmenting bonds
scales assλ, whereλ is exactly equal to 1 [14]. Thus,λH = λ.

The ratio of the number of external to internal perimeters proved to be a parameter that
is extremely sensitive to hidden correlations in the pseudo-random number generator. The
results we obtained by testing two standard generators are in excellent agreement with those
found recently with specially designed tests.

So far, our simulations of the fragmentation of percolation hulls have been restricted
to the two-dimensional case. Simulations in three dimensions, where the situation is still
controversial [15, 16], are still needed.
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